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Relatively simple geometric criteria are used to locate singularities (with respect to 
variable r12) of the rigid disk and sphere pair distribution function p’2)(rl , r2). Some 
singularities which arise in low density order are classified and tabulated. It is argued 
that the existence of random disk and sphere packings causes the singularities to occur 
densely for all rlz . Thus p’“) is nowhere analytic in this variable. Implications of this 
result are pointed out for both computational and analytical statistical mechanics of 
the disk and sphere models. 

1. INTRODUCTION 

In order for the practitioners of statistical mechanics to appreciate and exhibit 
the power of that discipline, they have found it necessary to exploit special models. 
Among the most popular of these models for molecules in interaction have been 
the rigid sphere system and its two-dimensional rigid disk analog. The reasons 
for their popularity lie partly in analytic tractability (relatively speaking!), partly 
in the helpful ease with which accessible molecular arrangements can be visualized, 
but largely in the ability of these models to demonstrate both fluid and solid phase 
properties along with a freezing transition [l, 21. 

Research on the equilibrium properties of rigid disk and sphere systems for- 
tunately has achieved wide-ranging success. In the low density regime, accurate 
virial coefficients are now available (through the seventh [3]). At the other extreme, 
high compression expansions have been developed both analytically [4, 51 and 
computationally [6,7]. Our general grasp of the behavior of these models further- 
more has been enriched by the “scaled particle” theory, [8, 91 and by the related 
closed-form solution to the hard-sphere Percus-Yevick integral equation [lo]. 

The rigid sphere and disk equilibrium pair distribution functions form the object 
of scrutiny in this paper. In particular, we shall examine the distribution of these 
functions’ singularities in their spatial variable r12 . Implications of the results 
for the future course of both analytical and computational work on these systems 
will be stressed at the appropriate points in Section 6. 
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368 STILLINGER 

2. FORMAL RELATIONS 

The grand ensemble provides the most convenient context in which to carry out 
our analysis. We start with the general expression for the pair distribution function 
p@)(r, , r.J for particles whose interaction potential is QN(rl *** rN): 

fYrl , r2) = exp(BQ) f N=2 cN<21! J & -.* j drNexp[-P@dl ... WI, 

p = (k,T)-1. (2.1) 

The absolute activity is denoted here by y: 

Y = exA%W, (2.2) 

where p is the chemical potential, X is the mean thermal de Broglie wavelength, 
and d is the system dimensionality. The position integrals in Eq. (2.1) span the 
system region, which we will denote by V both for disks (d = 2) and spheres 
(d = 3). The grand partition function itself is given by the expression: 

exp(-/3Q) = 1 $ il $$ J’ dr, ... 1 dr, exp[-@,,(r, ... rN)] 

The rigid sphere and disk models are special cases of the class of systems with 
pairwise-additive interactions: 

@NU .I. N) = ; cp(rzj). (2.4) 
i-ci=l 

For both spheres and disks we shall denote the collision diameter by a, so for these 
models 

dr) - +a, r < a, 

v(r) = 0, 
(2.5) 

r >, a. 

The pt2) expression (2.1) may then be rearranged somewhat: 

PO1 , r2) = y2 exP[-PdrIdl 

X 1( (2.6) 
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where we have introduced the set of configuration integrals 

xN(rl , r2> = 5 dr3 “’ j drN+2 exp 1 

N-t2 N+2 

-P jz [dlj) + d%)l - Pi<;, dii)/ (2.71 

for N particles in V’ moving under the influence of two other fixed particles. 
Our present interest lies in the case that V is very large compared to the particle 

size in all d directions. Thus, we may suppose that both r, and r2 are far from the 
boundary of V, so that at low density, pC2’ will depend spatially only on r12 = 
/r2 - rl I. 

It is known that the activity power series for the grand potential Sz and the 
distribution functionp(2)for rigid disks and spheres have nonzero convergence radii 
in the I’ + cc limit [l 11. We can therefore be assured that a y power series develop- 
ment of the last factor in Eq. (2.6) will have coefficients that approach physically 
meaningful limits as V + co. Specifically, one finds 

y-2 ~x~[Pdh2>l p(2Yh , cd 

1 + yWl(b , r21 - -&I 
2 

+ 5 W2(rl , r2) - 2ZJ,(r, , r2) - [Z2 - 2@I)211 

+ $iX,(r, , r,) - 3-W2(rl , r2) - W2 - 2G)21 Xl@, , r2) 

- L-G - 6Z2Z1 + 6(Zd311 

+ $ {X4@, , r,> - 4ZJ3(r, , r2> - 6[Z2 - 2G)21 x2(rl , r2) 
- 4123 - 62221 + WJ31 Xdr, , r2) 
- [Z, - 8Z3Z, - 6(Z2)2 + 36Z2(Zl)z - 24(2J4]} 

+ . . . (2.8) 

Although it is straightforward to write down the general coefficient in Eq. (2.8), 
that would be pointless for present purposes. We need merely to note that the yn 
coefficient consists of a linear combination of the Xi’s, wherej < n, and where the 
coefficient of X, is precisely (n !)-‘. The particular combinations of Xi and ZI, 
products which occur following X, are present to assure proper V+ co limit 
behavior, since in dominant order 

J/Jr, , r2) oc Vn as V - co. (2.9) 
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3. ONE-PARTICLE INTEGRALS 

In order to illustrate the foregoing general formalism, we now examine XI for 
disks and spheres. The results in themselves merely repeat what has long been 
known for the low-density (i.e., small y) pt2) behavior, especially via Mayer cluster 
theory [12]. However it is valuable to cover this ground again to provide a proper 
orientation for examination of higher-order terms in the next section. 

The shape of V is largely irrelevant, though for the sake of concreteness it may 
be visualized as a rectangle (d = 2) or rectangular solid (d = 3). We have 

X&I y r,> = I, 4 exP[-PdrIs) - Bdrd, (3.1) 

which for disks and spheres gives precisely the volume (or area) within V over which 
the center of particle 3 is free to move. As Fig. 1 shows, two cases must be 
distinguished for both d = 2 and 3; namely 0 < r12 < 2a, and 2a < r12 . The 
difference is simply that the exclusion region generated by infinite repulsions 

,----, 

p 
--’ 

FIG. 1. Region available to particle 3 in integral A’,@, , rz), Eq. (3.1). The rigid-particle 
repulsions with fixed particles 1 and 2 exclude a singly+zonnected region (dotted outline) in case 
(a), but for case (b) this exclusion region is unconnected. 
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between 1 and 3, and 2 and 3, is connected in the former case, but disconnected in 
the latter case. 

One readily calculates for rigid disks that 

2a < r12: . (3.2) 

The analogous rigid sphere result is 

X,(r, , rJ = V - $ a3 - 7ru2r12 + < rfz , 0 < r,, < 2a, 

= v- !+3, 2a < r12 . (3.3) 

Of course, also have 

z, = v (3.4) 

for both disks and spheres, so that the full coefficient X, - Z, of y in expression 
(2.8) is independent of V. 

Within each of the two ranges 0 < r12 < 2a, and 2u < r12, both the disk and 
sphere integrals X1 are analytic functions of the spatial variable r12 . The point 
r - 2a though is clearly a singular point at which the second derivatives of both 12 - 
fail to exist. It is obvious that this singular point is directly associated with the 
change in connectivity of the boundary within which the movable particle 3 must 
remain. The singular configuration separating the two cases is one which just 
permits the movable particle to fit between the other two fixed particles. 

4. SINGULARITIES OF HIGHER INTEGRALS 

The integrals X, rapidly increase in complexity as n, the number of movable 
particles involved, increases beyond one. No general technique is available for 
their exact evaluation, unfortunately. But such evaluations are not required if one’s 
goal is the more modest identification of the singular points in the r,, variation of 
they” coefficient in expansion (2.8). These singularities may be located by relatively 
simple geometric means. At least when one is within the convergence radius (in 
the y plane) of that expansion, the set of all these singularities for r12 > a will be 
precisely the singularities of pf2)(r12). 

Equation (2.7) shows for disks and spheres that X, equals the content of the 
entire (&)-dimensional accessible configuration space region R, for the y1 movable 
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particles. R, is bounded by a set of (dn - I)-dimensional hypersurfaces that 
correspond to the following special configuration conditions: 

(a) contact of any one of the n movable particles with the wall of V; 
(b) contact between any one of the movable particles, and either of fixed 

particles 1 and 2; 

(4 contact between any pair of movable particles. 

In the case n = 1 treated explicitly in the preceding section, only (a) and (b) are 
relevant of course; the singularity noted there at r12 = 2a concerned the change 
from intersection (when 0 < r12 < 2~) to nonintersection (2~ < rlz) of the surfaces 
(b). For general n, we must expect the geometric relationships between the hyper- 
surfaces of classes (b) and (c) to change as r12 varies. The result will be that several 
r12 intervals, or “cases”, will be generated within each of which analytic behavior 
in r12 will obtain, and the endpoints of which will be singular points of Z, , and 
therefore also ,P’. 

We now separately examine the situations for several small n values. 

n=2 

The singularity in X,(r, , rJ at r12 = 2a corresponds to exact fitting of a 
movable particle 3 between fixed particles 1 and 2. For larger r12 simultaneous 
contacts (13) and (23) are impossible. The same situation applies separately to the 
two movable particles 3 and 4 involved in X,(r, , rz). The separation ri2 = 2a is 
the maximum which permits simultaneous contacts (13) and (23) [or alternatively 
(14) and (24)]. A s r,, increases across this value the corresponding pairs of hyper- 
surfaces in class (b) above become disconnected on the boundary of R, . Therefore, 
the one-particle singularity r12 = 2a is repeated for the two-particle X,(r, , rJ. 

Repetition of singularities encountered in lower orders will be a universal trait 
for arbitrary n. It simply reflects the geometric behavior of proper subsets of the 
n movable particles in their tendency to reiterate previously encountered behavior. 
Of course new singular r12 values are also to be expected in each succeeding n 
order. 

Movable particles 3 and 4 can form a chain of simultaneous contacts such as 
(13)(34)(42) between 1 and 2, but only if rlz < 3~. If r12 > 3a however, these 
simultaneous contacts are obviously impossible. The boundary of (2d)-dimensional 
region R, has therefore changed in a fundamental way as r12 crosses 3a, since below 
this value contact hypersurfaces (13), (34), and (42) have common points, but 
above this value they do not. Consequently r12 = 3a must be a singular point of 
X, . Figure 2(a) shows the singular configuration. 

Another singular r,, value arises for n = 2, which is illustrated in Fig. 2(b). 
The reason for this singularity, at r12 = 3112a, is very clearly that two parallel 
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3 

@ 

1 2 

4 

(b) r 12 =$'*a 

FIG. 2. Singular configurations for X, . In (a), we have a two-particle chain which can just 
stretch between fixed particles 1 and 2 when r12 = 3~; a second possibility with 3 and 4 inter- 
changed also exists. Configuration (b) requires simultaneous contacts between (13), (32), (14), 
and (42), and produces a singularity at r12 = 3112 a; for larger r12 two parallel contact chains are 
impossible. 

contact chains (13)(32) and (14)(42) are impossible for larger r12 . Thus the bound- 
ary of R, only has points common to all the hypersurfaces (13), (32), (14), and (42) 
when r12 ,< 31i2u. For larger r12, the bounding surface set topology of R, is 
fundamentally different. 

Nijboer and Van Hove [ 131 have evaluated the rigid sphere pt2) via cluster theory 
through terms proportional to the square of the density. This is directly equivalent 
to order y2 in our expression (2.8), for which A’, and X, are required. Their results 
in fact show precisely the values: 

r12 = 2a, 3112a , 3a (4-l) 

to be those at which singularities occur, in agreement with the present analysis. 

n=3 

Consistent with previous remarks, we expect 2a, 31/2, and 3a also to be singular 
r12 values for X,(r, , r2). But since these values arise from interactions of less than 
the full set of movable particles, we can confine attention to situations simul- 
taneously involving all three movable particles 3, 4, and 5. 

The simplest possibility is surely the single contact chain spanning the space 
between fixed particles 1 and 2 [see Fig. 3(a)]. Each of the 3 ! = 6 possible single 
contact chains can exist only when r12 < 4a, so the upper limit r12 = 4a will be a 
singular point. The obvious generalization is that the point r12 = (n + 1)~ will 
be singular in X, , since it is the maximum extension possible for the single contact 
chain. 

Figure 3(b) shows a second possibility, involving a sort of hybrid chain. This case 

581/7/3-z 
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(a) r,2=4a 

(b) r,,=(3”2+~)a 

23/2 
Cc) q2 = -pa 

FIG. 3. Singular configurations for A’, . Both (a) and (b) are relevant to disks and spheres, 
while (c) refers to spheres alone. For clarity, only the centers of the three movable spheres are 
shown in (c). 

has two parallel paths of contacts in series with a single path. The six possible sets 
of contacts giving rise to this structure are 

(4.2) 

For each of these, r12 = (31j2 + 1)~ is the maximum possible extension. When 
r12 exceeds this singular upper limit, the boundary of R, will suddenly contain no 
points common to the quintets of hypersurfaces shown in (4.2). 

With n = 3 we encounter for the first time a distinction between disks and 
spheres, so far as singular r12 values are concerned. Only the latter can accommodate 
three parallel contact chains between fixed particles 1 and 2. Figure 3(c) provides 
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the relevant illustration, and one easily verifies that the corresponding singularity 
occurs at 

r 12 = (23/2/31/2)a. (4.3) 

n=4 

Several singular rIz values that arise for the first time when y1 = 4 represent 
straightforward extensions of earlier cases. They are exhibited in Fig. 4. The 

(b) r,2 = (3’/* t2) a 

0 1 2 

(cl rT2 =(3 “*+l)a 

Id) r,* = ($ + ,)a 

FIG. 4. Some singular A’, configurations. These are all obtained by interposing one or more 
particles in earlier cases. Structure (d) refers to spheres only. 

single chain (Fig. 4(a)) of course produces singular X, behavior at r,, = 5~. The 
chain with one doubled section (Fig. 4(b)) generates a singularity at r12 = 
(31/2 + 2)a. The case of two parallel chains, each involving two movable particles 
is shown in Fig. 4(c); it merely reinforces the earlier singularity of Fig. 3(b), 
albeit with a somewhat different structure. Figure 4(d) refers only to rigid spheres, 
and trivially extends structure Fig. 3(c) by interposing another particle between 1 
and 2. 
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Although we do not display it in a figure, it is clear that rigid spheres will also 
have a singularity associated with four parallel chains. The resulting octahedral 
arrangement corresponds to 

r,, = 2112a. (4.4) 

(b) 3i’2a~r,2~2a 

FIG. 5. Further contact sets for four movable disks or spheres. 

Figure S(a) illustrates a choice of simultaneous contacts with IZ = 4 that generates 
yet another singular rlz value (for both disks and spheres). It is possible to maintain 
these contacts, denoted in the figure by solid lines, only when 

(4.5) 

Of course the lower limit has already been encountered for n = 2 [see Fig. 2(b)]. 
The singular distances 

r12 = 3112a, 2a, 71J2a (4.6) 

in fact represent second, third, and fourth neighbor separations in the close-packed 
hexagonal disk lattice. In succeeding n orders we can expect singularities to be 
identified with fifth, sixth, seventh, -** neighbor distances in the same lattice. 

As we have seen before, certain contact set choices tend only to repeat earlier 
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singular r12 values, without giving any new information. Figure 5(b) shows such a 
case for n = 4, where the required contacts (the solid lines) are possible only if 

3112a < r12 < 2a. (4.7) 

An exhaustive survey indeed demonstrates that no further singularities for n = 4 
remain to be uncovered for rigid disks. 

Two more singularities are possible for rigid spheres alone, however. They 
pertain to the nonplanar contact configurations presented in Fig. 6. In its most 
extended form, the first of these in Fig. 6(a) forces the four movable spheres into a 

(a) 2”za<r,2s(3 i/2 + 2-1/2)a 

ib) r,z 5 (5/3h 

FIG. 6. Rigid sphere singularities for n = 4. Only the centers have been shown for the 
movable spheres. Solid lines indicate the required contacts. For both (a) and (b) the maximum 
extension, which generates the respective singularities, forces movable particles into a regular 
tetrahedral configuration. The dotted lines locate tetrahedron edges not included in the starting 
contact set. 

regular tetrahedral arrangement, and the implied singularitiy occurs at 

r 12 = (31j2 + 2-1/2)a. (4.8) 

The other case, in Fig. 6(b), likewise forces the movable particles into a regular 
tetrahedral configuration when r12 is maximized; now, however, particles 1 and 2 
are located above two tetrahedral faces, and the singularity lies at 

rlz = (5/3)a. (4.9) 

n=5 
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Table I collects the singular r,Ja values thus far inferred for it < 4. It is clear 
from that table that the number of singularities to be encountered in succeeding 
orders increases very rapidly. For that reason we shall not attempt to compile an 
exhaustive catalog for n = 5, many entries of which would be straightforward 
extensions of earlier cases. Instead, we shall restrict attention to a single especially 
interesting example. 

TABLE I 

Singularities in the rigid disk and sphere pair distribution functions. 
The listed r&z values are arranged in ascending order for each n 

n disks and spheres spheres only 

1 2 

2 3112 

2 
3 

- 

3 2w/3112 
31/z 

2 
3112 + 1 

3 
4 

4 2112 
23/2/31/z 

513 
3112 

2 
3112 + 2-112 

(23/2/31/2) + 1 
7112 

31jE + 1 
3 

3112 + 2 
4 
5 
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For the first time, with five movable particles, it is possible completely to encircle 
one of the fixed particles. This situation is shown in Fig. 7, and occurs when rlz = a. 
For both rigid disks and spheres, the quantity shown in Eq. (2.Q 

is well-defined for all 0 < rlz < a, but the existence of the configuration of Fig. 7 
raises the possibility that r12 = u is a singular point of this function. This is clearly 
the case for rigid disks, since region R, has boundary points corresponding to the 
six simultaneous contacts shown as solid lines in Fig. 7 if and only if r12 < a. 

FIG. 7. Particle-encircling contact set for n = 5. 

In the rigid sphere case, the reason for singular behavior at r12 = a is slightly 
different, but no less compelling. The relevant distinction now is whether or not 
the contact chain can move without collision over the fixed pair (1,2) in a 
“skiprope” mode. Indeed one easily sees that this mode is possible only when 
r12 < a. When r,, exceeds a, the set of boundary points for simultaneous contact 
along the chain (for fixed order of movable particles) is singly connected; however, 
when r,, decreases below a, this set becomes doubly connected. The resulting 
change in boundary set topology at r12 = a surely heralds singular behavior 
there. 

The existence of a singularity in the function (4.10) at rl, = a is highly significant. 
When viewed from the standpoint of functional Taylor series expansions [14], 
one sees that the Percus-Yevick integral equation for rigid disk and sphere p’2)‘s 
attempts to extrapolate these functions for r 12 3 a into the region 0 < r12 < a. 
The result of this extrapolation, which predicts function (4.10) over this inner 
region, allows construction of the “direct correlation function”. The singularity 
at r12 = a alone dooms this attempt to somewhat limited accuracy. It seems very 
noteworthy that on the one hand the Percus-Yevick theory fails to describe solid 
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phases for disks or spheres [15], while on the other hand the hexagonal grouping 
shown in Fig. 7 for deduction of the rlz = a singularity occurs ubiquitously in 
close-packed crystals both of spheres and disks. 

We now can supplement the set (4.6) of neighbor distances with the first-neighbor 
distance itself. These disk crystal distances of course also occur in the several 
close-packed sphere crystals, for which Fig. 3(c) actually exhibits particles 1 and 2 
at a characteristic neighbor separation. In a fuller analysis than we can present 
here, one would expect therefore to find all sphere neighbor distances in all close- 
packed structures to be singular points of pc2). 

5. RANDOM PACKINGS 

From information thus far adduced, it is clear that pt2) singularities must occur 
more and more closely spaced as r12 increases. The neighbor distance distributions 
for the close-packed lattices alone have this property. However, the same behavior 
can also be argued to obtain from fully extended chains of movable particles 
consisting of arbitrary sequences of single contacts [as in Fig. 2(a)] and parallel 
path pairs [Fig. 2(b)]. Th ese extended contact chains all have lengths of the form 

Y12 = (A + 31/ZB)a, (5.1) 

where A and B are nonnegative integers, and each will provide a singular point 
Since 31/2 is irrational, the nonintegral (or “fractional”) parts of A + 31j2B must 
take on an infinite number of distinct values which are distributed uniformly 
between 0 and 1 [16]. This implies the increasing density claimed as r12 -+ co. 

The knowledge that singularities in p t2) become densely distributed as r12 + co 
still leaves uncertain the possibility that enough singularities at finite r12 will tend 
to arise IZ + cc so that the complete set of singular points is everywhere dense for 
0 < r12 < co. We wish now to argue that this possibility in fact is realized. 

The key feature in our argument is the existence of a multiplicity of random 
disk and sphere packings for large n. These packings generally fail to show any 
long-range regularity. Random packings have been studied for insight into the 
nature of liquids [17, 181, and in the course of such investigations their average 
densities have been determined both for disks [19] and spheres [20]. 

Figure 8 presents a representative random disk packing for n = 56. For that 
packing a set of contact constraints has been chosen, and has been indicated as 
before by solid lines connecting disk centers. As a bit of experimentation readily 
shows (with pencil and paper, or coins on a flat surface), there are many ways of 
surrounding particles 1 and 2 at arbitrary separation r12 with a random packing. 
Subsequently, of course, there are again many choices possible for contact sets 
with each packing. 
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FIG. 8. Random disk packing for n = 56. The solid lines represent contacts which are to be 
maintained as rla varies. 

The packing, plus contact constraint set, constitutes generally a very complicated 
mechanical linkage. Except in very unusual cases [21] this linkage will permit r12 
to vary somewhat without breaking contacts or forcing overlaps between particle 
pairs. But if n is large (it has no upper limit so far as our argument is concerned) 
and if particles 1 and 2 are buried within the center of the random aggregate 
as in Fig. 8, the expected range of rlz variation will be very small. This r,, variation 
will either bring a close pair into contact, or will stretch a chain of contacts to 
maximum extension. In a very large aggregate it is virtually certain that a very close 
pair exist not quite in initial contact, or that a nearly completely extended chain 
present itself. 

The endpoints of r,, variation for each random packing must be p(2) singularities, 
since they are singularities of the associated X, . This latter fact is true due to 
occurrence of R, boundary points for the chosen simultaneous contact set only 
over the small accessible rl, range. It therefore seems that for any r12 in 0 < r12 < co 
(we permit here only the particles 1 and 2 to interpenetrate) there will be pf2) 
singularities that are arbitrarily close to that r12 value. In other words, the full 
set of p@) singularities is dense throughout the entire range 0 < r12 < co. 

For the most part, the singularities that are manifest in pt2) are very weak, 
and imply discontinuities only in very high-order derivatives of this function with 
respect to r12 . Indeed it has been empirically known for some time that disk and 
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sphere distribution functions were quite “smooth”. The dense distribution of 
singularities, regardless of how weak, nevertheless implies that the disk and sphere 
pc2)‘s are nowhere analytic in the variable r12 . 

6. DISCUSSION 

Although it has been the properties of the pair distribution functions $2) which 
have formed the subject of this paper so far, the analysis can be readily adapted 
to higher order distribution functions pt3), ~(~1, pf5), ... . One would ultimately 
conclude that each of these functions was nowhere analytic in their spatial variables 
rij , at least for densities that have a convergent virial expansion. 

We have already noted the difficulty posed by p@) singularities for the Percus- 
Yevick integral equation. The closely related “scaled particle theory” [8, 91 is 
is also affected by our results, since it uses each of pc2), pf3), pf4),... to construct its 
central quantity, the contact correlation function G(h) for a variably-sized sphere 
[radius (h - &)a]. Evidently the connection established by the scaled particle 
theory will not permit G(h) to be analytic in X for any + < X < 00. The Laurent 
series that have been used to represent G(h) in this range therefore have a funda- 
mental limitation. In order to improve significantly upon the scaled particle theory, 
explicit consideration will have to be given the more important singularities in 
the range 3 < X < co, perhaps by splicing together several suitable analytic 
functions of h to represent G(h). 

Since it has been based on the y power series (2.8), our argument thus far has 
strictly speaking been relevant only to the disk and sphere fluid phases [22]. 
Nevertheless, analogous results should apply to the pair distribution function in 
the solid phase, p@)(rl , r2), which will now generally depend on more than just 
the scalar spatial variable r12 . One first recognizes that the important terms in 
definition (2.1) for the solid’s pt2) will cluster sharply around N = m, where m is 
the average number of particles in V at the given solid-phase absolute activity y. 
Now in the V + co limit (constant u), it will always be possible to find con- 
figurations of movable particles with some finite number n in a randomly packed 
aggregate around 1 and 2, and the others moved cooperatively outward from the 
aggregate’s vicinity. However, it is precisely these randomly packed configurations 
for each finite n which produce pc2) singularities. Therefore, we are forced to 
conclude that the solid-phase pt2)(r1 , 2 r ) has a dense set of singularities in at least 
its scalar radial variable r12 . At present we can say nothing about singularities 
in other configurational variables for fixed r12 . 

It is worth appending here the observation that the strength of the individual 
singularities for the most part goes to zero as y -+ co. In this high-compression 
limit it becomes very costly on a free energy basis to effect the necessary cooperative 
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motion around fixed particles 1 and 2 which results in a very unnatural (for the 
crystal) random packing. Therefore, the limiting high-compression pair distri- 
bution functions (for which y tends to infinity before V tends to infinity) that may 
be studied through the convex geometry of limiting polytopes [23] need not be 
everywhere nonanalytic. 

The dense singularities which apply to rigid disk and sphere ,P’s have no 
analog for one-dimensional rigid rods. It is obvious that no one-dimensional 
version exists for the diverse and numerous random packings that are possible 
in two and three dimensions. The known rigid rod p@) in fact is piecewise analytic, 
with singularities corresponding to chains of contacting rods, the only pos- 
sibility [24]. 

It is worthwile remarking finally on the implication of our results for computa- 
tional statistical mechanics. Often, of course, the numerical distinction between 
analytic functions, and smooth but nowhere analytic functions, would be barely 
perceptible. This situation may largely be the case for disk and sphere pair distri- 
bution functions determined by Monte Carlo or molecular dynamics computations. 
Nevertheless it seems likely that a few of the singularities which we uncovered in 
Section 4 for small n (and which recur in each succeeding order) will have significant 
effects. If the singular values of r12 which have greatest importance are a, 31j2u, 
and 2a, for instance, it would be valuable to make separate polynomial fits to pc2) 
over the intervals a < r12 < 3112a and 31j2u ,< r12 < 2u (while enforcing continuity) 
for the purposes of accurate data representation. By a suitable extension of our 
arguments, it should be possible to identify the derivative order which first becomes 
discontinuous at each singularity, so that adroit interval fits could predict the 
numerical magnitude of those discontinuities as a function of density. 

In spite of clever experimentation [20], not too much is yet known about random 
disk or sphere packings. Since these random packings play such a central role, this 
ignorance of their rigorous mathematical properties is one reason the present 
heuristic argument cannot be elevated to the status of impeccable proof. Computer 
construction of random packing ensembles would be a valuable adjunct to the 
present work, employing either a variational technique [19] or some suitable 
alternative. Among other properties, one should seek to determine the average 
density of these jammed random packings, their average contact number and 
radial pair distribution, and their movement freedom (as in Section 5) when a 
free surface is present and various contact constraints maintained. 
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